Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.661
Filtrar
1.
Food Microbiol ; 109: 104135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309455

RESUMO

Salmonella enterica serovar Typhimurium monophasic variants (Salmonella 4,[5],12:i:-) has increased dramatically, causing human salmonellosis and colonization in pigs. With a difference to S. Typhimurium, the monophasic variants of S. Typhimurium lose the gene cassettes encoding the second phase flagellin. To establish a rapid method to detect and differentiate the two serotypes, we analyzed the published 679 genomes of S. Typhimurium and its monophasic variants and found that no Salmonella 4,[5],12:i:- strains carry both fljB and hin genes. Therefore, we established a novel multiplex PCR method using the fljB-hin region and mdh gene as target sequences to detect and differentiate both serotypes. This method can be used to specifically detect both serotypes with a detection limit for DNA concentration at 10 pg/µL. In addition, the PCR assay successfully differentiated 36 S. Typhimurium isolates from 62 isolates of monophasic variants preserved in our laboratory from 2009 to 2017, which corresponds to the whole-genome-based serotyping results. Application of the multiplex PCR method to 60 fecal samples from a pig farm identified 11.7% (7/60) of S. Typhimurium monophasic variants, which is consistent with the whole-genome-based serotyping results. The multiplex PCR assay is a rapid and precise method for the detection of S. Typhimurium monophasic variants from samples across food production chains.


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Fazendas , Reação em Cadeia da Polimerase Multiplex , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Sorogrupo , Suínos/microbiologia , Genoma Bacteriano
2.
Biosensors (Basel) ; 12(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36140111

RESUMO

Foodborne pathogenic bacteria have become a worldwide threat to human health, and rapid and sensitive bacterial detection methods are urgently needed. In this study, a facile microfluidic chip was developed and combined with recombinase-aided amplification (RAA) for rapid and sensitive detection of Salmonella typhimurium using a non-contact eddy heater for dynamic lysis of bacterial cells and a 3D-printed fan-shaped active mixer for continuous-flow mixing. First, the bacterial sample was injected into the chip to flow through the spiral channel coiling around an iron rod under an alternating electromagnetic field, resulting in the dynamic lysis of bacterial cells by this non-contact eddy heater to release their nucleic acids. After cooling to ~75 °C, these nucleic acids were continuous-flow mixed with magnetic silica beads using the fan-shaped mixer and captured in the separation chamber using a magnet. Finally, the captured nucleic acids were eluted by the eluent from the beads to flow into the detection chamber, followed by RAA detection of nucleic acids to determine the bacterial amount. Under the optimal conditions, this microfluidic chip was able to quantitatively detect Salmonella typhimurium from 1.1 × 102 to 1.1 × 105 CFU/mL in 40 min with a detection limit of 89 CFU/mL and might be prospective to offer a simple, low-cost, fast and specific bacterial detection technique for ensuring food safety.


Assuntos
Microfluídica , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Salmonella typhimurium , Ferro , Microfluídica/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos , Estudos Prospectivos , Salmonella typhimurium/isolamento & purificação , Dióxido de Silício
3.
Emerg Infect Dis ; 28(6): 1254-1256, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608817

RESUMO

Quantifying the effect of public health actions on population health is essential when justifying sustained public health investment. Using modeling, we conservatively estimated that rapid response to a multistate foodborne outbreak of Salmonella Typhimurium in the United States in 2018 potentially averted 94 reported cases and $633,181 in medical costs and productivity losses.


Assuntos
Saúde Pública , Saladas , Intoxicação Alimentar por Salmonella/epidemiologia , Salmonella typhimurium , Animais , Galinhas , Surtos de Doenças , Humanos , Saúde Pública/métodos , Saladas/efeitos adversos , Saladas/microbiologia , Intoxicação Alimentar por Salmonella/economia , Intoxicação Alimentar por Salmonella/etiologia , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/patogenicidade , Estados Unidos/epidemiologia
4.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215834

RESUMO

Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial growth reduction in liquid cultures. The phage stability was examined at various pH levels and temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it exhibited only 1-7% DNA coverage. The phage genome features 44% GC content, and 234 putative open reading frames were predicted. The genome was predicted to encode for 28 structural proteins and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further, the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage, and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily Vequintavirinae, of which SSBI34 may represent a new genus.


Assuntos
Myoviridae/genética , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Animais , Bacteriólise , Agentes de Controle Biológico , Genoma Viral , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fases de Leitura Aberta , Terapia por Fagos , Filogenia , Aves Domésticas/microbiologia , Infecções por Salmonella/terapia , Fagos de Salmonella/classificação , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/fisiologia , Salmonella typhimurium/isolamento & purificação
6.
Anal Bioanal Chem ; 414(2): 1073-1080, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693471

RESUMO

In this study, Lba Cas12a (Cpf1) as one of the CRISPR systems from Lachnospiraceae bacterium was coupled with a hybridization chain reaction (HCR) to develop an electrochemical biosensor for detecting the pathogenic bacterium, Salmonella typhimurium. Autonomous cross-opening of functional DNA hairpin structures of HCR yielded polymer double-stranded DNA wires consisting of numerous single-stranded DNAs, which initiated the trans-cleavage activity of CRISPR-Cas12a to indiscriminately cleave random single-stranded DNA labeling electrochemical tags on the surface of the electrode. It led to a variation in the electron transfer of electrochemical tags. The polymer double-stranded DNA of HCR was immobilized on dynabeads (DBs) via the S. typhimurium aptamer and released from DBs. The established method could selectively and sensitively quantify S. typhimurium in samples with detection limits of 20 CFU/mL. Our study provides a novel insight for exploring universal analytical methods for pathogenic bacteria based on CRISPR-Cas12a coupled with HCR.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas , Técnicas Eletroquímicas/métodos , Salmonella typhimurium/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Salmonella typhimurium/patogenicidade
7.
J Biol Chem ; 298(1): 101461, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864057

RESUMO

Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.


Assuntos
Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Salmonella , Salmonella typhimurium , Animais , Caspase 1/genética , Caspase 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/isolamento & purificação
9.
Sci Rep ; 11(1): 21617, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732799

RESUMO

Non-typhoidal Salmonella (NTS) ranks first among causes of bloodstream infection in children under five years old in the Democratic Republic of Congo and has a case fatality rate of 15%. Main host-associated risk factors are Plasmodium falciparum malaria, anemia and malnutrition. NTS transmission in sub-Saharan Africa is poorly understood. NTS bloodstream infections mostly occur during the rainy season, which may reflect seasonal variation in either environmental transmission or host susceptibility. We hypothesized that environment- and host-associated factors contribute independently to the seasonal variation in NTS bloodstream infections in children under five years old admitted to Kisantu referral hospital in 2013-2019. We used remotely sensed rainfall and temperature data as proxies for environmental factors and hospital data for host-associated factors. We used principal component analysis to disentangle the interrelated environment- and host-associated factors. With timeseries regression, we demonstrated a direct association between rainfall and NTS variation, independent of host-associated factors. While the latter explained 17.5% of NTS variation, rainfall explained an additional 9%. The direct association with rainfall points to environmental NTS transmission, which should be explored by environmental sampling studies. Environmental and climate change may increase NTS transmission directly or via host susceptibility, which highlights the importance of preventive public health interventions.


Assuntos
Hospitalização/estatística & dados numéricos , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Estações do Ano , Sepse/epidemiologia , Antibacterianos/uso terapêutico , Pré-Escolar , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Fatores de Risco , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Sepse/tratamento farmacológico , Sepse/microbiologia
10.
Biosensors (Basel) ; 11(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34821663

RESUMO

In this study, a fluorescent biosensor was developed for the sensitive detection of Salmonella typhimurium using a low-gradient magnetic field and deep learning via faster region-based convolutional neural networks (R-CNN) to recognize the fluorescent spots on the bacterial cells. First, magnetic nanobeads (MNBs) coated with capture antibodies were used to separate target bacteria from the sample background, resulting in the formation of magnetic bacteria. Then, fluorescein isothiocyanate fluorescent microspheres (FITC-FMs) modified with detection antibodies were used to label the magnetic bacteria, resulting in the formation of fluorescent bacteria. After the fluorescent bacteria were attracted against the bottom of an ELISA well using a low-gradient magnetic field, resulting in the conversion from a three-dimensional (spatial) distribution of the fluorescent bacteria to a two-dimensional (planar) distribution, the images of the fluorescent bacteria were finally collected using a high-resolution fluorescence microscope and processed using the faster R-CNN algorithm to calculate the number of the fluorescent spots for the determination of target bacteria. Under the optimal conditions, this biosensor was able to quantitatively detect Salmonella typhimurium from 6.9 × 101 to 1.1 × 103 CFU/mL within 2.5 h with the lower detection limit of 55 CFU/mL. The fluorescent biosensor has the potential to simultaneously detect multiple types of foodborne bacteria using MNBs coated with their capture antibodies and different fluorescent microspheres modified with their detection antibodies.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Contaminação de Alimentos/análise , Redes Neurais de Computação , Salmonella typhimurium/isolamento & purificação , Campos Magnéticos
11.
Sci Rep ; 11(1): 21971, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753973

RESUMO

Nine odorless laboratory-collected hydro-distilled aqueous extracts (basil, calendula, centrifuged oregano, corn silk, laurel, oregano, rosemary, spearmint, thyme) and one industrial steam-distilled oregano hydrolate acquired as by-products of essential oils purification were screened for their in vitro antimicrobial activity against three Salmonella Typhimurium strains (4/74, FS8, FS115) at 4 and 37 °C. Susceptibility to the extracts was mainly plant- and temperature-dependent, though strain dependent effects were also observed. Industrial oregano hydrolate eliminated strains immediately after inoculation, exhibiting the highest antimicrobial potential. Hydro-distilled extracts eliminated/reduced Salmonella levels during incubation at 4 °C. At 37 °C, oregano, centrifuged oregano, thyme, calendula and basil were bactericidal while spearmint, rosemary and corn silk bacteriostatic. A strain-dependent effect was observed for laurel. The individual or combined effect of marinades and edible coatings prepared of industrial hydrolate and hydro-distilled oregano extracts with or without oregano essential oil (OEO) was tested in pork meat at 4 °C inoculated with FS8 strain. Lower in situ activity was observed compared to in vitro assays. Marinades and edible coatings prepared of industrial oregano hydrolate + OEO were the most efficient in inhibiting pathogen. Marination in oregano extract and subsequent coating with either 50% oregano extract + OEO or water + OEO enhanced the performance of oregano extract. In conclusion, by-products of oregano essential oil purification may be promising alternative antimicrobials to pork meat stored under refrigeration when applied in the context of multiple hurdle approach.


Assuntos
Antibacterianos/farmacologia , Inocuidade dos Alimentos , Extratos Vegetais/farmacologia , Carne de Porco/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Antibacterianos/química , Cromatografia Líquida de Alta Pressão/métodos , Contagem de Colônia Microbiana , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Salmonella typhimurium/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Suínos , Espectrometria de Massas em Tandem/métodos , Água/química
12.
Biomed Res Int ; 2021: 5604458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568492

RESUMO

Disease caused by antibiotic-resistant Salmonella is a serious clinical problem that poses a great threat to public health. The present study is aimed at assessing differences in bacterial kinetics with different antibiotic resistance profiles under environmental stress and at developing microbial tolerance models in lettuce during storage from 4 to 36°C. The drug-resistance phenotypes of 10 Salmonella Typhimurium (S. Typhimurium) isolates were examined using the broth microdilution method. The results of 10 S. Typhimurium isolates in the suspensions showed that a slow trend towards reduction of drug-sensitive (DS) isolates in relation to the others though without statistical difference. Compared to DS S. Typhimurium SA62, greater bacterial reduction was observed in multidrug-resistant (MDR) S. Typhimurium HZC3 during lettuce storage at 4°C (P < 0.05). It was likely that a cross-response between antibiotic resistance and food-associated stress tolerance. The greater growth in lettuce at 12°C was observed for DS S. Typhimurium SA62 compared to MDR S. Typhimurium HZC3 and was even statistically different (P < 0.05), while no significant difference was observed for bacterial growth between MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 strains in lettuce storage from 16 to 36°C (P > 0.05). The goodness-of-fit indices indicated the Log-linear primary model provided a satisfactory fit to describe the MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 survival at 4°C. A square root secondary model could be used to describe the effect of temperature (12, 16, 28, and 36°C) on the growth rates of S. Typhimurium HZC3 (adj - R 2 = 0.91, RMSE = 0.06) and S. Typhimurium SA62 (adj - R 2 = 0.99, RMSE = 0.01) derived from the Huang primary model. It was necessary to pay attention to the tolerance of antibiotic resistant bacteria under environmental stress, and the generated models could provide parts of the input data for microbial risk assessment of Salmonella with different antibiotic resistance profile in lettuce.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Meio Ambiente , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Fenótipo , Reprodutibilidade dos Testes , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/isolamento & purificação , Estresse Fisiológico/efeitos dos fármacos
13.
Biosci Rep ; 41(9)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34519329

RESUMO

Campylobacter jejuni and Salmonella typhimurium are the leading causes of bacterial food contamination in chicken carcasses. Contamination is particularly associated with the slaughtering process. The present study isolated C. jejuni and S. typhimurim from fifty chicken carcass samples, all of which were acquired from different companies in Riyadh, Saudi Arabia. The identification of C. jejuni was performed phenotypically by using a hippurate test and genetically using a polymerase chain reaction with primers for 16S rRNA and hippurate hydrolase (hipO gene). For the dentification of S. typhimurim, a serological Widal test was carried out using serum anti-S. typhimurium antibodies. Strains were genetically detected using invA gene primers. The positive isolates for C. jejuni showed a specific molecular size of 1448 bp for 16S rRNA and 1148 bp for hipO genes. However, the positive isolates of the invA gene exhibited a specific molecular size at 244 bp using polymerase chain reaction (PCR). Comparing sequencing was performed with respect to the invA gene and the BLAST nucleotide isolates that were identified as Salmonella enterica subsp. enterica serovar typhimurium strain ST45, thereby producing a similarity of 100%. The testing identified C.jejuni for hippuricase, GenBank: Z36940.1. While many isolates of Salmonella spp. that contained the invA gene were not necessarily identified as S. typhimurim, the limiting factor for the Widal test used antiS. typhimurum antibodies. The multidrug resistance (MDR) of C. jejuni isolates in chickens was compared with the standard C. jejuni strain ATCC 22931. Similarly, S. typhimurium isolates were compared with the standard S. typhimurium strain ATCC 14028.


Assuntos
Amidoidrolases/genética , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Microbiologia de Alimentos , Reação em Cadeia da Polimerase , Produtos Avícolas/microbiologia , Ribotipagem , Salmonella typhimurium/genética , Fatores de Virulência/genética , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Manipulação de Alimentos , Testes de Sensibilidade Microbiana , Intoxicação Alimentar por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/isolamento & purificação , Arábia Saudita
15.
J Microbiol ; 59(9): 861-870, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34382146

RESUMO

Salmonella Typhimurium (ST313) has caused an epidemic of invasive disease in sub-Saharan Africa and has been recently identified in Brazil. As the virulence of this ST is poorly understood, the present study aimed to (i) perform the RNA-seq in vitro of S. Typhimurium STm30 (ST313) grown in Luria-Bertani medium at 37°C; (ii) compare it with the RNA-seq of the S. Typhimurium SL1344 (ST19) and S. Typhimurium STm11 (ST19) strains under the same growing conditions; and (iii) examine the colonization capacity and expression of virulence genes and cytokines in murine colon. The STm30 (ST313) strain exhibited stronger virulence and was associated with a more inflammatory profile than the strains SL1344 (ST19) and STm11 (ST19), as demonstrated by transcriptome and in vivo assay. The expression levels of the hilA, sopD2, pipB, and ssaS virulence genes, other Salmonella pathogenicity islands SPI-1 and SPI-2 genes or effectors, and genes of the cytokines IL-1ß, IFN-γ, TNF-α, IL-6, IL-17, IL-22, and IL-12 were increased during ST313 infection in C57BL/6J mice. In conclusion, S. Typhimurium STm30 (ST313) isolated from human feces in Brazil express higher levels of pathogenesis-related genes at 37°C and has stronger colonization and invasion capacity in murine colon due to its high expression levels of virulence genes, when compared with the S. Typhimurium SL1344 (ST19) and STm11 (ST19) strains. STm30 (ST313) also induces stronger expression of pro-inflammatory cytokines in this organ, suggesting that it causes more extensive tissue damage.


Assuntos
Colo/microbiologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Brasil , Colo/imunologia , Citocinas/genética , Citocinas/imunologia , Fezes/microbiologia , Ilhas Genômicas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/fisiologia , Virulência
16.
Sci Rep ; 11(1): 11482, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075064

RESUMO

pUO-STmRV1 is an IncC plasmid discovered in the Spanish clone of the emergent monophasic variant of Salmonella enterica serovar Typhimurium, which has probably contributed to its epidemiological success. The sequence of the entire plasmid determined herein revealed a largely degenerated backbone with accessory DNA incorporated at four different locations. The acquired DNA constitutes more than two-thirds of the pUO-STmRV1 genome and originates from plasmids of different incompatibility groups, including IncF (such as R100 and pSLT, the virulence plasmid specific of S. Typhimurium), IncN and IncI, from the integrative element GIsul2, or from yet unknown sources. In addition to pSLT virulence genes, the plasmid carries genes conferring resistance to widely-used antibiotics and heavy metals, together with a wealth of genetic elements involved in DNA mobility. The latter comprise class 1 integrons, transposons, pseudo-transposons, and insertion sequences, strikingly with 14 copies of IS26, which could have played a crucial role in the assembly of the complex plasmid. Typing of pUO-STmRV1 revealed backbone features characteristically associated with type 1 and type 2 IncC plasmids and could therefore be regarded as a hybrid plasmid. However, a rooted phylogenetic tree based on core genes indicates that it rather belongs to an ancient lineage which diverged at an early stage from the branch leading to most extant IncC plasmids detected so far. pUO-STmRV1 may have evolved at a time when uncontrolled use of antibiotics and biocides favored the accumulation of multiple resistance genes within an IncC backbone. The resulting plasmid thus allowed the Spanish clone to withstand a wide variety of adverse conditions, while simultaneously promoting its own propagation through vertical transmission.


Assuntos
Elementos de DNA Transponíveis , Filogenia , Plasmídeos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Fatores de Virulência/genética , Humanos , Salmonella typhimurium/isolamento & purificação , Espanha
17.
Mikrochim Acta ; 188(6): 202, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34041580

RESUMO

Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) are the two most important foodborne pathogens which can easily cause disease infections. Here, the aptamer-facilitated gold/silver nanodimer SERS probes were built for the simultaneous detection of the two bacteria with the help of magnetic separation enrichment. First, two nanodimer SERS signal probes and two magnetic capture probes each connected with the specific aptamer were fabricated. The distance between gold and silver nanoparticles in the dimer can amplify the Raman signal (Cy3 and Rox) at the junction but modified in the aptamer sequence. Then, after the addition of S. typhimurium and S. aureus, the sandwich-like composite structures "SERS signal probes-target-magnetic capture probes" formed because of the high affinity between aptamer sequences and their target bacteria. Under the optimal experimental conditions, the linear correlations between Raman intensity and the logarithm of the concentration of bacteria were y = 876.95x-67.84 (R2 = 0.9865) for S. typhimurium and y = 1280.43x-1752.6 (R2 = 0.9883) for S. aureus. The SERS detection showed the nanodimer probe had high selectivity. Besides, the recovery experiment in milk sample indicated good accuracy compared with the traditional plate counting method.


Assuntos
Carga Bacteriana/métodos , Nanopartículas Metálicas/química , Salmonella typhimurium/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Animais , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Ouro/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Leite/microbiologia , Salmonella typhimurium/química , Prata/química , Análise Espectral Raman/métodos , Staphylococcus aureus/química
18.
J Parasitol ; 107(3): 381-387, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971011

RESUMO

Co-infections of mammalian hosts with intestinal helminths and bacterial pathogens are common, especially in areas with inadequate sanitation. Interactions between co-infecting species and host microbiota can cause significant changes in host immunity, disease severity, and pathogen transmission, requiring unique treatment for each case. A greater understanding of the influences of parasite-bacteria co-infections will improve diagnosis and therapeutic approaches to control infectious diseases. To study the influence of the trematode parasite Echinostoma caproni on commensal and pathogenic bacteria in the mouse gut, we examined the abundance of intestinal lactic acid bacteria and Salmonella enterica serovar Typhimurium in control mice not exposed to E. caproni (P-) or S. Typhimurium (S-), E. caproni-infected (P+S-), S. Typhimurium-infected (P-S+), and E. caproni-S. Typhimurium co-infected (P+S+) mice, and determined bacterial burdens in the livers and spleens of the P-S+ and P+S+ mice. We also examined a subset of P+S- and P+S+ mice for survival and the relative location of E. caproni in the small intestine. The numbers of presumptive lactic acid bacteria were significantly higher in the P+S+ and P-S+ mice compared to the uninfected mice, and S. Typhimurium colonization in the liver and spleen was significantly reduced in the P+S+ mice compared to the P-S+ mice. Echinostoma caproni were located anteriorly in the intestine of P+S- mice, while in the P+S+ mice, the parasites were distributed more posteriorly. Survival of E. caproni was unaffected in either group. The results of our study suggest that E. caproni facilitates a higher abundance of presumptive lactic acid bacteria in the mouse intestine and reduces colonization of S. Typhimurium in the liver and spleen of the co-infected host.


Assuntos
Echinostoma/fisiologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Lactobacillales/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Biomphalaria/parasitologia , Echinostoma/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Feminino , Lactobacillales/isolamento & purificação , Fígado/microbiologia , Fígado/parasitologia , Metacercárias/isolamento & purificação , Metacercárias/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Método de Monte Carlo , Salmonella typhimurium/isolamento & purificação , Baço/microbiologia , Baço/parasitologia
19.
Int J Antimicrob Agents ; 57(5): 106332, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33798705

RESUMO

Among the 10 reported mcr genes, mcr-9 was first identified in Salmonella enterica serotype Typhimurium, which is a leading cause of foodborne illness worldwide. However, information about the prevalence and genetic features of mcr-9 is still lacking, especially among food samples. This study reports the presence of mcr-9 in raw milk samples from China; the prevalence rate was low (0.83%, 1/120). mcr-9 was located on a transferable plasmid, and was stable in wild-type S. enterica. However, it had a biological fitness cost when transferred to an Escherichia coli recipient. Whole-genome sequencing revealed that mcr-9 was located on the IncHI2A-type plasmid, and was surrounded by IS903B and IS26 in its flanking regions. The mcr-9-carrying S. enterica 19SE belonged to ST26 and had a multi-drug-resistant phenotype. It was confirmed that mcr-9 did not mediate colistin resistance in this study, indicating that its transfer may not facilitate the dissemination of colistin resistance.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Etanolaminofosfotransferase/genética , Leite/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Animais , China , Farmacorresistência Bacteriana Múltipla , Etanolaminofosfotransferase/metabolismo , Microbiologia de Alimentos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/metabolismo , Sequenciamento Completo do Genoma
20.
Int J Food Microbiol ; 347: 109198, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33894462

RESUMO

The U.S. FDA Food Safety Modernization Act Preventive Controls for Human Food Rule underlines the importance of an effective environmental monitoring (EM) program. EM is used to determine harborage sites of microorganisms on processing equipment, assess effectiveness of sanitation programs, and prevent transmission of foodborne pathogens. This study characterizes commercially-available polyurethane foam (PUF) and cellulose (CELL) EM tools for their efficacy in the release of foodborne pathogens from their sponge matrices. Specifically, the objectives of this study were to 1) compare the ability of EM tools to release microorganisms into a recovery eluent, 2) characterize EM tool performance at decreasing inoculum concentrations, and 3) assess the impact of various operators during the processing of EM samples. Two bacteria (Listeria monocytogenes, Salmonella Typhimurium) and one human norovirus surrogate (Tulane virus [TV]) were compared at decreasing inoculum levels utilizing two elution techniques (mechanical stomacher, manually by operator), and across six operators. Data indicated that EM tool material composition impacted the release of microorganisms (p = 0.0001), where the PUF EM tool released TV more readily than the CELL EM tool. Conversely, the decreasing inoculum levels did not statistically differ in the release of microorganisms from the EM tool matrices. In addition, no significant difference was found between the machine stomacher and manual elution by human operator or between operators. Overall, the study provides a detailed characterization of two commercially-available EM tools, and the differences identified in this study can be used to improve the effectiveness of EM programs.


Assuntos
Celulose/farmacologia , Monitoramento Ambiental/métodos , Listeria monocytogenes/isolamento & purificação , Norovirus/isolamento & purificação , Poliuretanos/farmacologia , Salmonella typhimurium/isolamento & purificação , Carga Bacteriana/métodos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Listeria monocytogenes/genética , Norovirus/genética , Salmonella typhimurium/genética , Carga Viral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...